
Homework 3

36-708, Spring 2023

Due April 7 at 5PM EST

Please attach all code to your homework. In an RMarkdown document for example, this can be done
in one line (see Yihui Xie’s website for how to do this).

1 Deriving boosting-like variants for square and logistic losses

• Data: Assume n labeled data points (x1, y1), . . . , (xn, yn) ∈ Rd × {−1, 1}.

• Classifier: Denote by f =
∑S

t=1 αtht the linear combination of base classifiers ht with weights αt.
Here, S denotes the number of possible decision stumps on x1, . . . , xn.

• Loss function: Let the loss function to be used in the boosting derivation be F = 1
n

∑n
i=1 ϕ(−yif(xi))

for some function ϕ (to be specified). The 0-1 loss is ϕ0−1(−u) = 1(u ≤ 0) but we will use surrogates
of this.

• Algorithm: Boosting, which we will derive from the point of view of coordinate descent on the loss
function F .

1.1 AdaBoost as coordinate descent

In this problem, we will use ϕexp(−u) := exp(−u), the exponential loss. We will rederiving boosting as
coordinate descent to recover AdaBoost.

(a) Write the objective function we wish to minimize: F (α) := 1
n

∑n
i=1 exp

(
−yi

∑S
j=1 αjhj(xi)

)
. Con-

sider the “coordinate” of steepest descent:

argmin
k

∂F (α+ ηek)

∂η

∣∣∣∣∣
η=0

.

Show that

∂F (α+ ηek)

∂η

∣∣∣∣∣
η=0

∝
n∑

i=1

−yihk(xi)wi

= 2εt,k − 1

where wi is a weight given by1

wi :=
exp

{
−yi

∑S
j=1 αjhj(xi)

}
∑n

i=1 exp
{
−yi

∑S
j=1 αjhj(xi)

}
1Note that this is the same as the weight discussed in the lecture on AdaBoost, but with an alternatively written

normalization constant.

1

https://bookdown.org/yihui/rmarkdown-cookbook/code-appendix.html


and εt,k is the (wi)
n
i=1-weighted 0-1 error for the kth learner at time step t, given by

εt,k :=

n∑
i=1

wi1(yi ̸= hk(xi)).

Finally, conclude that the argmink of the above is the weak learner with smallest weighted 0-1 error.

(b) Show that the step-size η is given by 1
2 log

(
1−εt,k
εt,k

)
. That is, show that 1

2 log
(

1−εt,k
εt,k

)
is the solution

to
∂F (α+ ηek)

∂η
= 0.

(c) Write the pseudo-code for AdaBoost.

1.2 SquareBoost using the squared loss

We will repeat the previous problem but for the squared loss, ϕ2(−u) = (1− u)21(u ≤ 1).

(a) Consider the objective function:

F (α) =
1

n

n∑
i=1

1− yi

S∑
j=1

hj(xi)αj

2

1

yi

S∑
j=1

hj(xi)αj ≤ 1

 .

Using similar steps to before, show that the minimizer of the above loss is the weak learner with best
0-1 loss on the weighted data with weights given by

wi :=
(1− yif(xi))1

(
yi
∑S

j=1 hj(xi)αj ≤ 1
)

∑n
i=1(1− yif(xi))1

(
yi
∑S

j=1 hj(xi)αj ≤ 1
) .

(b) Unlike AdaBoost, the step size of SquareBoost cannot be computed in closed-form. How would you
go about computing it?

(c) Write the pseudo-code for SquareBoost.

1.3 LogisticBoost using the logistic loss

We will repeat the previous problems but for the logistic loss, ϕℓ(−u) = log(1 + e−u).

(a) Show that the minimizer of the logistic loss is given by the weak learner with smallest 0-1 loss on the
weighted data where weights are given by

wi =
logit−1(−yif(xi))∑n
i=1 logit

−1(−yif(xi))
.

(b) Show how finding the step-size is equivalent to training a logistic regression model with and offset
and no intercept. Explain how you could compute this step size.

(c) Write the pseudo-code for LogisticBoost.

1.4 Comparison of AdaBoost, SquareBoost, and LogisticBoost

(a) How do the three previous boosting algorithms differ?

2



2 Implementing and evaluating boosting

In this problem, we will implement the previous three boosting algorithms and apply them to the spam
dataset.

• Dataset: We will use the spam dataset available here.

• Train and test split: Use a random 3:1 split.

(a) Implement AdaBoost, SquareBoost, and LogisticBoost with decision stumps as the base classifiers.
Note that you do not have to minimize the weighted 0-1 loss exactly. [Hint: In R, you can use the
package rpart to find the best decision stump at each iteration efficiently. In python, you can use
the function sklearn.tree.DecisionTreeClassifer.]

(b) Run the boosting algorithms for various values of the number of boosting rounds t (for some reasonable
upper limit T ).

(c) Plot the train and test errors of all three algorithms as a function of t.

(d) Summarize your findings. In particular, comment on the following.

• How fast does the training error decrease?

• Does the training error reach zero? What happens to the testing error if you train longer?

(e) Is the weak learning hypothesis satisfied? If so, explain why. If not, are you able to modify the set
of base classifiers so that it is?

3 Kernel calculus and the Gaussian kernel

To hack the so-called kernel trick into a machine learning algorithm, we need to be able come up with
(or justify the choices of) valid kernel functions. One approach to do this is to first construct explicit
feature maps and then get the kernels using corresponding inner products. An alternate approach is to
directly construct kernels that are appropriate for a given application by building them out of simpler
kernels using calculus of kernels. In this questions, we play around with some of such calculus rules and
use them to show the validity of the popular Gaussian kernel. Consider the following setup.

• K1,K2 : Rd × Rd → R and K3 : RD × RD → R are any valid kernel functions.

• Constants: c1, c2 are nonnegative real constants

• Polynomial: p is a polynomial with nonnegative coefficients.

• Generic function: ϕ : Rd → RD is any function.

• Generic points: u, v ∈ Rd.

Prove that the following are valid kernels:

(a) c1K1(u, v) + c2K2(u, v),

(b) K1(u, v)K2(u, v),

(c) p(K1(u, v)),

(d) exp(K1(u, v)), and

(e) K3(ϕ(u), ϕ(v)).

(f) Using the above, show that

K(u, v) = exp

(
−∥u− v∥2

2σ2

)
is a valid kernel.

3

http://archive.ics.uci.edu/ml/datasets/Spambase


4 Two flavours of kernel regression

In this question we explore two flavors of kernel regression. One is a local fit perspective and the other
is a global fit perspective, but both of them lead to smoothers involving kernels.

4.1 Kernel regression

Consider the following local linear regression setup.

• Data: features xi ∈ Rd and responses yi ∈ R for i = 1, . . . , n.

• Regression estimate: at a point x ∈ Rd the regression estimate is denoted by f̂(x) = β̂Tx where

β̂ = argmin
β

n∑
i=1

wi(x)
(
yi − βTxi

)2
, and

wi(x) :=
K(x, xi)∑n
i=1 K(x, xi)

,

for some kernel K.

(a) Verify that the objective function can be re-written as

(y −Xβ)TΩ(x)(y −Xβ)

where y =
(
y1 y2 · · · yn

)T ∈ Rn andX =
(
x1 x2 · · · xn

)T ∈ Rn×d, and Ω(x) = diag(w1(x), . . . , wn(x)).

(b) Show that f̂(x) is a linear combination of {yi}ni=1.

4.2 Kernelized ridge regression

The nonparametric kernel regression in the question above performs a local fit around the test point.
Let us now investigate the use of kernels for regression in another way. We apply the kernel trick in
regular regression as follows. Note that this produces a global fit to the data. Consider the following
ridge regression setup.

• Data: features x ∈ Rd and responses yi ∈ R for i = 1, . . . , n.

• Feature map: we use a feature mapping function ϕ to map the original d-dimensional feature vector
x to a new D-dimensional feature vector ϕ(x), where D ≫ d.

• Regression estimate: the regression estimate at a point x ∈ Rd is denoted by f̂(x) := β̂Tϕ(x), where

β̂ = argmin
β

1

2
∥y − Φβ∥2 + λ

2
∥β∥2,

and Φ :=
(
ϕ(x1) . . . ϕ(xn)

)T ∈ Rn×D denotes the kernel design matrix and λ is a regularization
parameter.

(a) Show that we can write β̂ = ΦT (ΦΦT + λIn)
−1y where In is the identity matrix.

(b) Show that we can alternately write β̂ = (ΦTΦ+ λID)−1ΦT y.

4



(c) In practice, designing ϕ is nontrivial, and when it is designed, we must compute the inner product
ϕ(x)Tϕ(x′) which may be costly. Instead we may want to use the kernel K(x, x′) = ϕ(x)Tϕ(x′)
directly if it is computationally cheaper. Show how to ‘kernelize’ ridge regression (both in the training
and evaluation phases) in the sense that neither ϕ(x) nor ϕ(x)Tϕ(x′) would need to be computed, but
K(x, x′) would. In particular, show that the predicted value at a new test point x⋆ can be computed
as

y⋆ = yT (M + λIn)
−1c(x⋆)

for some matrix M ∈ Rn×n and vector c(x⋆) ∈ Rn. Write down expressions for M and c(x) in terms
of the kernel.

5


	Deriving boosting-like variants for square and logistic losses
	AdaBoost as coordinate descent
	SquareBoost using the squared loss
	LogisticBoost using the logistic loss
	Comparison of AdaBoost, SquareBoost, and LogisticBoost

	Implementing and evaluating boosting
	Kernel calculus and the Gaussian kernel
	Two flavours of kernel regression
	Kernel regression
	Kernelized ridge regression


